Exploring the Transferability of the GCASE Methodology to Locations in Sonora, Mexico, Esplendor Hotel Rio Rico, Arizona November 13, Orange, CA July 31, 2014

I. GCASE: Methodology

Climate change impact assessment on water resources

Eylon Shamir (presenter)

Eshamir@hrcwater.org

Hydrologic Research Center, San Diego <u>www.hrcwater.org</u>

coauthors:

Sharon B. Megdal and, Susanna Eden Water Resources Research, University of Arizona (UA)

Karletta Chief, Soil Water & Environ. Sciences, UA

&

Cristopher Castro, Atmospheric Sciences, UA

Funded by, NOAA Climate and Societal Interactions Sectoral Applications Research Program (SARP)

Project Goals and Approach

- 1. Develop water resources decision support modeling framework that addresses future climate uncertainties
 - -Climate scenarios and surface water flows
 - -Linkages to groundwater recharge
 - -Linkages to water management decisions
- 2. Increase stakeholders' capacity to adapt water planning and management to future climate uncertainties
- 3. Establish transferability of the modeling approach and stakeholder engagement

Santa Cruz River - Alluvial Aquifer

Seasonal Precipitation & Streamflow

Precipitation Categorization

Rainfall Generator

Hydrologic Modeling Framework

Climate and Hydrologic Models

Issues with widely used climate impact assessment procedures

Statistical Downscaled CMIP 3 &5 Climate and Hydrology Projections http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/

RECLAMATION **EUSGS** Santa Clara University CLIMATE CENTRAL SCRIPPS INSTITUTION OF OCEANOGRAPHY

Precipitation from 8 IPCC-AR3, A2 emission scenario, dynamically downscaled regional climate models

No.	Regional Model	Resolution
1	Max Planck Institute (MPI)	35 km², 6 h,
2	Hadley center (HADCAM3)	1950-2100
3-8	North American Regional Climate Change Assessment Program [NARCCAP]	50km ² , 3 h, 1970-2000 2040-2070

Projected Wetness by 8 models

<u>SUMMER</u>

- 7 models projected MORE DRY summers
- Only 2 models projected MORE WET summers

<u>WINTER</u>

- 8 models projected MORE DRY winters
- 6 models projected MORE WET winters

Regional Climate Model

Clear reduction in Summer

Higher variability in Winter

Summary

- We developed a modeling framework that is capable to generate ensembles of likely realizations that represent the climate variability of rainfall, streamflow and ground water recharge
- Climate projections indicate:
 - higher frequency of dry summers
 - lower frequency of wet summers
 - higher frequency of dry and wet winters